Serveur d'exploration Melampsora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genetic analysis reveals long-standing population differentiation and high diversity in the rust pathogen Melampsora lini.

Identifieur interne : 000003 ( Main/Exploration ); précédent : 000002; suivant : 000004

Genetic analysis reveals long-standing population differentiation and high diversity in the rust pathogen Melampsora lini.

Auteurs : Hanna Susi [Australie] ; Jeremy J. Burdon [Australie] ; Peter H. Thrall [Australie] ; Adnane Nemri [Australie] ; Luke G. Barrett [Australie]

Source :

RBID : pubmed:32810177

Descripteurs français

English descriptors

Abstract

A priority for research on infectious disease is to understand how epidemiological and evolutionary processes interact to influence pathogen population dynamics and disease outcomes. However, little is understood about how population adaptation changes across time, how sexual vs. asexual reproduction contribute to the spread of pathogens in wild populations and how diversity measured with neutral and selectively important markers correlates across years. Here, we report results from a long-term study of epidemiological and genetic dynamics within several natural populations of the Linum marginale-Melampsora lini plant-pathogen interaction. Using pathogen isolates collected from three populations of wild flax (L. marginale) spanning 16 annual epidemics, we probe links between pathogen population dynamics, phenotypic variation for infectivity and genomic polymorphism. Pathogen genotyping was performed using 1567 genome-wide SNP loci and sequence data from two infectivity loci (AvrP123, AvrP4). Pathogen isolates were phenotyped for infectivity using a differential set. Patterns of epidemic development were assessed by conducting surveys of infection prevalence in one population (Kiandra) annually. Bayesian clustering analyses revealed host population and ecotype as key predictors of pathogen genetic structure. Despite strong fluctuations in pathogen population size and severe annual bottlenecks, analysis of molecular variance revealed that pathogen population differentiation was relatively stable over time. Annually, varying levels of clonal spread (0-44.8%) contributed to epidemics. However, within populations, temporal genetic composition was dynamic with rapid turnover of pathogen genotypes, despite the dominance of only four infectivity phenotypes across the entire study period. Furthermore, in the presence of strong fluctuations in population size and migration, spatial selection may maintain pathogen populations that, despite being phenotypically stable, are genetically highly dynamic.

DOI: 10.1371/journal.ppat.1008731
PubMed: 32810177
PubMed Central: PMC7454959


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genetic analysis reveals long-standing population differentiation and high diversity in the rust pathogen Melampsora lini.</title>
<author>
<name sortKey="Susi, Hanna" sort="Susi, Hanna" uniqKey="Susi H" first="Hanna" last="Susi">Hanna Susi</name>
<affiliation wicri:level="1">
<nlm:affiliation>CSIRO Agriculture & Food, Canberra, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>CSIRO Agriculture & Food, Canberra</wicri:regionArea>
<wicri:noRegion>Canberra</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Burdon, Jeremy J" sort="Burdon, Jeremy J" uniqKey="Burdon J" first="Jeremy J" last="Burdon">Jeremy J. Burdon</name>
<affiliation wicri:level="1">
<nlm:affiliation>CSIRO Agriculture & Food, Canberra, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>CSIRO Agriculture & Food, Canberra</wicri:regionArea>
<wicri:noRegion>Canberra</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Thrall, Peter H" sort="Thrall, Peter H" uniqKey="Thrall P" first="Peter H" last="Thrall">Peter H. Thrall</name>
<affiliation wicri:level="1">
<nlm:affiliation>CSIRO Agriculture & Food, Canberra, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>CSIRO Agriculture & Food, Canberra</wicri:regionArea>
<wicri:noRegion>Canberra</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nemri, Adnane" sort="Nemri, Adnane" uniqKey="Nemri A" first="Adnane" last="Nemri">Adnane Nemri</name>
<affiliation wicri:level="1">
<nlm:affiliation>CSIRO Agriculture & Food, Canberra, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>CSIRO Agriculture & Food, Canberra</wicri:regionArea>
<wicri:noRegion>Canberra</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Barrett, Luke G" sort="Barrett, Luke G" uniqKey="Barrett L" first="Luke G" last="Barrett">Luke G. Barrett</name>
<affiliation wicri:level="1">
<nlm:affiliation>CSIRO Agriculture & Food, Canberra, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>CSIRO Agriculture & Food, Canberra</wicri:regionArea>
<wicri:noRegion>Canberra</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32810177</idno>
<idno type="pmid">32810177</idno>
<idno type="doi">10.1371/journal.ppat.1008731</idno>
<idno type="pmc">PMC7454959</idno>
<idno type="wicri:Area/Main/Corpus">000003</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000003</idno>
<idno type="wicri:Area/Main/Curation">000003</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000003</idno>
<idno type="wicri:Area/Main/Exploration">000003</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genetic analysis reveals long-standing population differentiation and high diversity in the rust pathogen Melampsora lini.</title>
<author>
<name sortKey="Susi, Hanna" sort="Susi, Hanna" uniqKey="Susi H" first="Hanna" last="Susi">Hanna Susi</name>
<affiliation wicri:level="1">
<nlm:affiliation>CSIRO Agriculture & Food, Canberra, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>CSIRO Agriculture & Food, Canberra</wicri:regionArea>
<wicri:noRegion>Canberra</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Burdon, Jeremy J" sort="Burdon, Jeremy J" uniqKey="Burdon J" first="Jeremy J" last="Burdon">Jeremy J. Burdon</name>
<affiliation wicri:level="1">
<nlm:affiliation>CSIRO Agriculture & Food, Canberra, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>CSIRO Agriculture & Food, Canberra</wicri:regionArea>
<wicri:noRegion>Canberra</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Thrall, Peter H" sort="Thrall, Peter H" uniqKey="Thrall P" first="Peter H" last="Thrall">Peter H. Thrall</name>
<affiliation wicri:level="1">
<nlm:affiliation>CSIRO Agriculture & Food, Canberra, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>CSIRO Agriculture & Food, Canberra</wicri:regionArea>
<wicri:noRegion>Canberra</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nemri, Adnane" sort="Nemri, Adnane" uniqKey="Nemri A" first="Adnane" last="Nemri">Adnane Nemri</name>
<affiliation wicri:level="1">
<nlm:affiliation>CSIRO Agriculture & Food, Canberra, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>CSIRO Agriculture & Food, Canberra</wicri:regionArea>
<wicri:noRegion>Canberra</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Barrett, Luke G" sort="Barrett, Luke G" uniqKey="Barrett L" first="Luke G" last="Barrett">Luke G. Barrett</name>
<affiliation wicri:level="1">
<nlm:affiliation>CSIRO Agriculture & Food, Canberra, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>CSIRO Agriculture & Food, Canberra</wicri:regionArea>
<wicri:noRegion>Canberra</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS pathogens</title>
<idno type="eISSN">1553-7374</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basidiomycota (classification)</term>
<term>Basidiomycota (genetics)</term>
<term>Basidiomycota (isolation & purification)</term>
<term>Biodiversity (MeSH)</term>
<term>Biological Evolution (MeSH)</term>
<term>Flax (microbiology)</term>
<term>Genetic Variation (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Phenotype (MeSH)</term>
<term>Plant Diseases (microbiology)</term>
<term>Polymorphism, Genetic (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Basidiomycota (classification)</term>
<term>Basidiomycota (génétique)</term>
<term>Basidiomycota (isolement et purification)</term>
<term>Biodiversité (MeSH)</term>
<term>Génotype (MeSH)</term>
<term>Lin (microbiologie)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Phénotype (MeSH)</term>
<term>Polymorphisme génétique (MeSH)</term>
<term>Variation génétique (MeSH)</term>
<term>Évolution biologique (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Lin</term>
<term>Maladies des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Flax</term>
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodiversity</term>
<term>Biological Evolution</term>
<term>Genetic Variation</term>
<term>Genotype</term>
<term>Phenotype</term>
<term>Polymorphism, Genetic</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="fr">
<term>Basidiomycota</term>
<term>Biodiversité</term>
<term>Génotype</term>
<term>Phénotype</term>
<term>Polymorphisme génétique</term>
<term>Variation génétique</term>
<term>Évolution biologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A priority for research on infectious disease is to understand how epidemiological and evolutionary processes interact to influence pathogen population dynamics and disease outcomes. However, little is understood about how population adaptation changes across time, how sexual vs. asexual reproduction contribute to the spread of pathogens in wild populations and how diversity measured with neutral and selectively important markers correlates across years. Here, we report results from a long-term study of epidemiological and genetic dynamics within several natural populations of the Linum marginale-Melampsora lini plant-pathogen interaction. Using pathogen isolates collected from three populations of wild flax (L. marginale) spanning 16 annual epidemics, we probe links between pathogen population dynamics, phenotypic variation for infectivity and genomic polymorphism. Pathogen genotyping was performed using 1567 genome-wide SNP loci and sequence data from two infectivity loci (AvrP123, AvrP4). Pathogen isolates were phenotyped for infectivity using a differential set. Patterns of epidemic development were assessed by conducting surveys of infection prevalence in one population (Kiandra) annually. Bayesian clustering analyses revealed host population and ecotype as key predictors of pathogen genetic structure. Despite strong fluctuations in pathogen population size and severe annual bottlenecks, analysis of molecular variance revealed that pathogen population differentiation was relatively stable over time. Annually, varying levels of clonal spread (0-44.8%) contributed to epidemics. However, within populations, temporal genetic composition was dynamic with rapid turnover of pathogen genotypes, despite the dominance of only four infectivity phenotypes across the entire study period. Furthermore, in the presence of strong fluctuations in population size and migration, spatial selection may maintain pathogen populations that, despite being phenotypically stable, are genetically highly dynamic.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32810177</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>10</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1553-7374</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>16</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2020</Year>
<Month>08</Month>
</PubDate>
</JournalIssue>
<Title>PLoS pathogens</Title>
<ISOAbbreviation>PLoS Pathog</ISOAbbreviation>
</Journal>
<ArticleTitle>Genetic analysis reveals long-standing population differentiation and high diversity in the rust pathogen Melampsora lini.</ArticleTitle>
<Pagination>
<MedlinePgn>e1008731</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.ppat.1008731</ELocationID>
<Abstract>
<AbstractText>A priority for research on infectious disease is to understand how epidemiological and evolutionary processes interact to influence pathogen population dynamics and disease outcomes. However, little is understood about how population adaptation changes across time, how sexual vs. asexual reproduction contribute to the spread of pathogens in wild populations and how diversity measured with neutral and selectively important markers correlates across years. Here, we report results from a long-term study of epidemiological and genetic dynamics within several natural populations of the Linum marginale-Melampsora lini plant-pathogen interaction. Using pathogen isolates collected from three populations of wild flax (L. marginale) spanning 16 annual epidemics, we probe links between pathogen population dynamics, phenotypic variation for infectivity and genomic polymorphism. Pathogen genotyping was performed using 1567 genome-wide SNP loci and sequence data from two infectivity loci (AvrP123, AvrP4). Pathogen isolates were phenotyped for infectivity using a differential set. Patterns of epidemic development were assessed by conducting surveys of infection prevalence in one population (Kiandra) annually. Bayesian clustering analyses revealed host population and ecotype as key predictors of pathogen genetic structure. Despite strong fluctuations in pathogen population size and severe annual bottlenecks, analysis of molecular variance revealed that pathogen population differentiation was relatively stable over time. Annually, varying levels of clonal spread (0-44.8%) contributed to epidemics. However, within populations, temporal genetic composition was dynamic with rapid turnover of pathogen genotypes, despite the dominance of only four infectivity phenotypes across the entire study period. Furthermore, in the presence of strong fluctuations in population size and migration, spatial selection may maintain pathogen populations that, despite being phenotypically stable, are genetically highly dynamic.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Susi</LastName>
<ForeName>Hanna</ForeName>
<Initials>H</Initials>
<Identifier Source="ORCID">0000-0001-6814-9205</Identifier>
<AffiliationInfo>
<Affiliation>CSIRO Agriculture & Food, Canberra, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Burdon</LastName>
<ForeName>Jeremy J</ForeName>
<Initials>JJ</Initials>
<Identifier Source="ORCID">0000-0002-4792-4986</Identifier>
<AffiliationInfo>
<Affiliation>CSIRO Agriculture & Food, Canberra, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Thrall</LastName>
<ForeName>Peter H</ForeName>
<Initials>PH</Initials>
<AffiliationInfo>
<Affiliation>CSIRO Agriculture & Food, Canberra, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nemri</LastName>
<ForeName>Adnane</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>CSIRO Agriculture & Food, Canberra, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Barrett</LastName>
<ForeName>Luke G</ForeName>
<Initials>LG</Initials>
<Identifier Source="ORCID">0000-0001-6530-0731</Identifier>
<AffiliationInfo>
<Affiliation>CSIRO Agriculture & Food, Canberra, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>08</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Pathog</MedlineTA>
<NlmUniqueID>101238921</NlmUniqueID>
<ISSNLinking>1553-7366</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044822" MajorTopicYN="N">Biodiversity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005075" MajorTopicYN="N">Biological Evolution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019597" MajorTopicYN="N">Flax</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="N">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011110" MajorTopicYN="N">Polymorphism, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>03</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>06</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>08</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32810177</ArticleId>
<ArticleId IdType="doi">10.1371/journal.ppat.1008731</ArticleId>
<ArticleId IdType="pii">PPATHOGENS-D-20-00619</ArticleId>
<ArticleId IdType="pmc">PMC7454959</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Evolution. 2007 Jul;61(7):1613-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17598744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2012 Oct;21(20):4996-5008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22967194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2014 Feb;23(3):603-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24354737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1991 Feb;45(1):205-217</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28564067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2006 Sep;96(9):1027-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18944059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2015 Jul;105(7):982-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26068281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1994 Oct;48(5):1564-1575</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28568407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ecol. 2011 Jan;99(1):96-112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21243068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2012 Oct;25(10):1918-1936</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22905782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2005 Jun;14(7):2065-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15910327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2015 Apr;105(4):542-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25317843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Parasitol. 2009 May;25(5):236-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19356982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Dec 6;450(7171):870-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18004303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2009 Nov;26(11):2499-513</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19633228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2015 Feb 25;16:23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25723868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2014 Jul 22;281(1787):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24870042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1975 Jun;45(6):231-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24419466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Nov 27;109(48):E3305-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22949662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2008 Nov;21(6):1861-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18717749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 1997 Apr;87(4):448-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18945126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2018 Mar 21;9:503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29619017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 1997 Jul;87(7):664-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18945086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1988 Apr;118(4):705-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17246421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hered. 2010 Mar-Apr;101 Suppl 1:S13-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20421322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Genet Evol. 2008 Sep;8(5):577-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18499532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2000 Jan;84 ( Pt 1):81-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10692014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2002 May 7;269(1494):931-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12028776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PeerJ. 2015 Jul 21;3:e1106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26244114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2012 May;15(5):425-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22372578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2011 Jul;14(7):635-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21521436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11591-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7972108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Microbiol. 1999 Dec;87(6):898-906</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10692074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Apr 1;332(6025):106-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21454789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2002 Apr;19(4):501-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11919291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1991 Nov;45(7):1618-1627</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28564135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genet. 2010 Oct 15;11:94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20950446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2013 Jan 19;368(1610):20120086</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23209168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2002;40:349-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12147764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2008 Jul;17(14):3401-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18573166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5129-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1675793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 1998;14(1):68-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9520503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2017 Apr;26(7):1902-1918</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28012228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2019 Nov 7;10(1):5068</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31699975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2011;49:345-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21513455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2006 Jan;96(1):96-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18944209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 May 15;90(10):4384-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8506277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Genet. 2015 Jun 10;6:208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26113860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1999 Jun;53(3):704-716</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28565630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1980 Oct;96(2):523-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17249067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2008 Jul;21(4):1068-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18462312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2017 Sep;107(9):1000-1010</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28513284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Resour. 2016 Jul;16(4):845-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26858112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2014 Mar;95(3):703-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24804454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2017 Mar;107(3):329-344</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27775498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2008 Dec;23(12):678-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18947899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2011;49:465-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21568701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Evol. 2016 Aug 26;6(18):6625-6632</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27777735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2013 Aug;26(8):1716-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23701131</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
</country>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Susi, Hanna" sort="Susi, Hanna" uniqKey="Susi H" first="Hanna" last="Susi">Hanna Susi</name>
</noRegion>
<name sortKey="Barrett, Luke G" sort="Barrett, Luke G" uniqKey="Barrett L" first="Luke G" last="Barrett">Luke G. Barrett</name>
<name sortKey="Burdon, Jeremy J" sort="Burdon, Jeremy J" uniqKey="Burdon J" first="Jeremy J" last="Burdon">Jeremy J. Burdon</name>
<name sortKey="Nemri, Adnane" sort="Nemri, Adnane" uniqKey="Nemri A" first="Adnane" last="Nemri">Adnane Nemri</name>
<name sortKey="Thrall, Peter H" sort="Thrall, Peter H" uniqKey="Thrall P" first="Peter H" last="Thrall">Peter H. Thrall</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MelampsoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000003 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000003 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MelampsoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32810177
   |texte=   Genetic analysis reveals long-standing population differentiation and high diversity in the rust pathogen Melampsora lini.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32810177" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MelampsoraV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Mon Nov 2 18:19:24 2020. Site generation: Thu Feb 15 23:05:49 2024